PCT水平的升高与多种疾病相关,尤其是在炎症或细菌感染状态下。
Recombinant Biotinylated Human ANGPTL2(生物素标记的重组人血管生成素样蛋白2,ANGPTL2)是一种经过特殊修饰的重组蛋白,为研究炎症反应、代谢调节以及相关疾病机制提供了重要的工具。ANGPTL2是一种分泌性蛋白,属于血管生成素样蛋白家族,广泛表达于多种细胞类型中,包括免疫细胞、内皮细胞和脂肪细胞。它在炎症、代谢紊乱和肿瘤微环境的形成中发挥重要作用。 在炎症反应中,ANGPTL2能够调节免疫细胞的活化和迁移。它通过与细胞表面受体结合,促进炎症因子的分泌,加剧炎症反应。此外,ANGPTL2在代谢调节中也扮演关键角色。它能够影响脂肪细胞的代谢功能,调节脂质代谢和能量平衡。在肥胖和2型糖尿病等代谢性疾病中,ANGPTL2的水平显著升高,与代谢紊乱和慢性炎症密切相关。因此,ANGPTL2被认为是代谢性疾病和炎症研究的重要靶点。 生物素标记技术为ANGPTL2的研究提供了强大的支持。
通过检测PSA1 (141-150) 的表达水平和结构变化,可以更准确地评估前列腺癌的进展和预后。
在人体的生理调控机制中,促红细胞生成素(EPO,Erythropoietin)是一种至关重要的糖蛋白激素,主要负责调节红细胞的生成。EPO在维持血液中红细胞数量和氧输送能力方面发挥着关键作用,是生物医学研究和临床治疗中的重要靶点。 EPO的结构与功能 EPO是一种糖蛋白,由166个氨基酸组成,含有多个糖基化位点。这些糖基化位点对于EPO的稳定性和生物活性至关重要。EPO通过与促红细胞生成素受体(EPOR)结合,激活JAK2-STAT5信号通路,促进红细胞前体细胞的增殖和分化,最终生成成熟的红细胞。 在生理过程中的作用 EPO在生理过程中发挥着重要作用。当体内氧含量降低时,肾脏中的EPO生成增加,以促进红细胞的生成,从而提高血液的氧输送能力。这种调节机制对于维持身体的正常生理功能至关重要,特别是在高海拔或缺氧环境下。例如,在登山运动员或生活在高海拔地区的人群中,EPO水平的升高有助于他们适应低氧环境。 在疾病治疗中的应用 EPO在临床上的应用广泛,主要用于治疗贫血。例如,在慢性肾病患者中,由于肾脏功能受损,EPO的生成减少,导致红细胞生成不足,从而引发贫血。
随着对其作用机制的深入研究,这种肽有望在生物医学领域发挥更大的作用。
Biotinylated Human VEGF R2(生物素标记的人血管内皮生长因子受体2)是一种经过生物素修饰的重组蛋白,广泛应用于血管生成及相关疾病的生物医学研究中。VEGF R2(KDR/Flk-1)是血管内皮生长因子(VEGF)的主要功能性受体之一,在血管生成、组织修复、胚胎发育以及多种病理过程(如肿瘤血管生成)中发挥着关键作用。 生物素标记技术赋予了VEGF R2独特的实验优势。生物素链与霉亲和素(streptavidin)具有极高的亲和力,这种特异性结合能力使得Biotinylated Human VEGF R2成为一种强大的工具,可用于检测和分析VEGF与其受体之间的相互作用。在细胞实验中,该标记蛋白可用于研究VEGF R2在细胞表面的表达水平、分布情况以及信号转导通路的激活过程。通过与荧光标记的链霉亲和素结合,研究人员可以利用荧光显微镜直观地观察VEGF R2在细胞内的定位变化,揭示其在细胞生理活动中的动态调控机制。 此外,Biotinylated Human VEGF R2还可用于体外诊断和生物传感器开发。
添加了红色和黄色两种电泳指示染料不会削弱DNA在紫外灯下的荧光效果相比传统染料如溴酚蓝具有更好的使用
Urocortin III(Ucn III)是哺乳动物中发现的一种内源性肽类激素,属于促肾上腺皮质激素释放因子(CRF)家族。它与CRF家族的其他成员一样,通过激活G蛋白偶联受体来调节内分泌、自主神经和行为对应激的反应。在小鼠中,Urocortin III主要由下丘脑、杏仁核和脑干等脑区的神经元表达,并且在小肠和皮肤等外周组织中也有表达。 生理功能 Urocortin III在调节应激反应、代谢和心血管功能方面发挥着重要作用。它通过选择性激活CRF2受体来发挥作用。在中枢神经系统中,Urocortin III参与调节食物摄入和神经内分泌功能。此外,Urocortin III在胰岛中的表达和作用也引起了研究者的关注。它在胰岛β细胞中表达,并通过激活CRF2受体来调节胰岛素分泌。Urocortin III的表达是β细胞成熟的标志,其在未成熟的β细胞中不表达,并在去分化和功能失调的β细胞状态下下调。 研究进展 Urocortin III的发现为理解CRF家族肽在生理和病理过程中的作用提供了新的视角。研究表明,Urocortin III在调节应激反应和代谢过程中具有独特的功能。
它能够促进细胞的增殖和分化,特别是在成骨细胞和软骨细胞中。
Oligo(dT)₂₅ mRNA磁珠是一种基于磁珠分离技术的高效工具,专门用于从总RNA或细胞裂解液中快速纯化mRNA。其核心原理是利用磁珠表面修饰的Oligo(dT)₂₅序列与mRNA的poly(A)尾特异性结合,通过磁场分离和洗涤步骤,最终获得高纯度的mRNA。 工作原理 Oligo(dT)₂₅磁珠表面修饰了生物素化的Oligo(dT)₂₅序列,这些序列能够特异性结合mRNA的poly(A)尾。当样本与磁珠混合后,mRNA通过碱基互补配对与Oligo(dT)₂₅结合。随后,通过磁场将磁珠与溶液分离,去除杂质后,用洗脱液将mRNA从磁珠上洗脱下来。 优势 高纯度:提取的mRNA纯度高,适合多种下游实验,如RT-qPCR、cDNA文库构建、高通量测序等。 快速高效:整个提取过程仅需15分钟,操作简便。 无需洗脱:提取产物中的磁珠可以不洗脱而直接用于下游实验。 可重复使用:磁珠可再生并多次使用,降低了实验成本。 注意事项 防止RNase污染:操作过程中需使用无RNase的塑料制品和枪头。 磁珠保存:磁珠应避免干燥,使用前需充分混匀。 裂解液处理:样本裂解时需快速操作,避免RNA降解。
它具有与 EB 相当的灵敏度,能够检测到低浓度的核酸分子,同时避免了 EB 的高毒性和潜在致癌性。
在分子生物学研究中,RNA转录是探索基因表达、蛋白质合成以及RNA功能的关键步骤。T7高产量RNA转录试剂盒以其卓越的性能和高效的RNA合成能力,成为实验室中不可或缺的工具,为科学家们提供了稳定可靠的RNA合成解决方案。 T7高产量RNA转录试剂盒的核心是T7 RNA聚合酶,这种酶以其高效性和特异性而闻名。它能够特异性地识别T7噬菌体启动子序列,并在短时间内合成大量的RNA。试剂盒通过优化反应条件,确保了RNA合成的高效率和高产量。与传统的转录方法相比,T7高产量RNA转录试剂盒能够在更短的时间内完成转录反应,大大提高了实验效率。 在实际应用中,T7高产量RNA转录试剂盒广泛应用于多个领域。例如,在基因表达研究中,它可以用于合成特定的mRNA,用于后续的翻译实验或基因功能研究。在RNA结构分析中,该试剂盒能够合成高质量的RNA样本,用于核磁共振(NMR)或X射线晶体学等结构生物学研究。此外,它还可以用于合成RNA探针,用于原位杂交或基因芯片分析,帮助科学家快速定位和检测目标基因。
上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!